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Mathematical Formulation 
of Information

“Information” has two (related) mathematical meanings: 

1) How much did you expect something you 
experience (“it is going to rain”)?

2) How unsure are you about some aspect of the world 
(e.g. “is it going to rain?”)?

− log p(x)

−
∑

Possibilities

p(x) log p(x)
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How Humans Search 
Scenes

People don’t closely 
examine every inch of 
the world.

Eye-movements are 
tuned to optimally 
gather information 
(Sense 1 and Sense 2).

These different notions 
of information led to 
very different models: 

1)Visual Saliency
2) Digital Retina
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Visual Saliency

Salient objects “pop out” of visual 
scenes.

Simple preprocessing step directs 
computational resources.
Rare (improbable) image features 
are more salient than common 
(probable ones)
Improbable events carry more 
information (Sense 1).

We developed an efficient way to 
model the statistics of a video stream, 
and analyze it for salient “pop out”.

*Zhang, Cottrell
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A Promising 
Framework

A common framework is shared by several authors.

Claim: The goal of eye-movements is to find visual targets.

Approach: Attend to regions x of the visual plane which 
contain visual targets with high probability. 

In open-ended tasks, drop class-specific terms.

Salience(x) = log[p(Cx = 1|ImgFeatsx)]
= log[p(ImgFeatsx|Cx = 1)] + log[p(Cx = 1)]− log[p(ImgFeatsx)]

Estimate using current 
image histogram
(Torralba et al.)

Estimate using local 
region histogram

(Bruce & Tsotsos)

Estimate using natural 
image histograms
(Zhang et al.)*

*Best suited to real-time implementation
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Zhang’s SUN Model 

Zhang et al. created the “Saliency Using Natural-statistics” model 
of visual saliency.

Salience(x) = − log[p(ImgFeatsx)]

Space: Difference Of Gaussians 
filters at increasing spatial 

scales.

Time: Difference Of Exponentials 
filters at increasing temporal 

scales.
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*Parameters σ and θ are estimated from 
Image Features in natural images.

p(ImgFeatsx) =
∏

i

Ci exp(|ImgFeatsi
x/σi|θi)
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SUN Algorithm 
Sketch

1. Grab a new video frame

2. Filter frame with N Difference-of-
Gaussian filters at increasing spatial scales.

3. Integrate each DoG filter with M+1 
previous Exponential filters at increasing 
time-scales.
[τj/(1+τj) DoGk + 1/(1+τj) OldExponentialkj]

4. Compute NM Difference-of-Exponential 
temporal filters.

5. Compute -log p(DoE) for each pixel x of 
each DoE filter i: 
-log p(DoEi) = |DoEi /σi |θi ; for θi and σi fit 
to spatiotemporal scale in natural images.

6. Sum all NM -log p(DoE) to get salience for 
each pixel x.
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Efficient 
Approximation 

Our goal is a much-faster-than-real-time algorithm.

We achieve this with two approximations. 

1. Instead of Difference-of-Gaussian spatial filters, we use Difference-
of-Box Haar-style filters. [Efficient convolution]

2. Instead of Generalized Gaussian probability model, we use Laplacian 
probability model. [Efficient inference]

Fig. 2. Difference of Gaussians filter, and the Difference of Boxes approximation. The filters are typical of those used in this paper, with the rcenter =
1/2 rsurround. The filters are respectively applied to the original image (left). Absolute filter responses are shown.

Algorithm 1 Initialize Saliency
1: NS ⇐ 5 {Parameter: # of Spatial Scales}
2: NT ⇐ 5 {Parameter: # of Temporal Scales}
3: Minσ ⇐ 1 {Parameter: Smallest Box Filter Radius
∈ [1,∞)}

4: Minτ ⇐ 1 {Parameter: Smallest Time Parameter
∈ (0,∞)}

5: σ[1]⇐Minσ
6: τ [1]⇐Minτ
7: for i = 1 to NS do
8: σ[i + 1]⇐ 2σ[i]
9: end for

10: for j = 1 to NT do
11: τ [j + 1]⇐ 2τ [j]
12: end for
13: for all Exp[i, j] do
14: Exp[i, j]⇐ #0 {Exp has (NS+1, NT +1) vectors

the size of the salience map.}
15: end for

2) The DoG filters were approximated by difference of
box filters DoB (See Figure 2).1

3) The filter impulse response distribution was modeled
as a Laplacian distribution with unit variance, a special
case of the generalized Gaussian distribution.2

As in Zhang’s original model, we assume an open-ended
visual search task, i.e. we don’t have prior knowledge about
where in an image generally interesting objects will appear,
or what they will look like. Under these conditions the
location prior p(Cx = 1) and the object appearance model
p(fx|Cx = 1) are approximately constant with respect to x
and thus can be ignored.

The approach is pseudocoded in Algorithms 1&2. In
Algorithm 2, all arithmetic operations are vector operations.

The computational complexity was roughly linear with
respect to n, the number of pixels, as well as NS and NT ,
the number of spatial scales and temporal scales. Tables I&II
show the time needed to compute saliency on a frame varying
each of these three complexity dimensions. The computations

1DoB are types of box-filters, a computationally efficient class of filters
that have been used with much success recently in visual object classification
[12]

2In the generalized Gaussian case we have − log p(f) =
P

|fi/σi|θi .
This becomes − log p(f) =

P
|fi| under our Laplacian with σi = 1

approximation.

Algorithm 2 Calculate Saliency s(x)
Require: NS, NT, σ, τ, Exp initialized in Algorithm 1.

Exp is updated in this Algorithm.
1: SaliencyMap⇐ #0
2: Im⇐ get downsampled frame from camera
3: BoxFilt[1]⇐ Filter Im with box-filter, width=2σ[1]+1
4: for i = 1 to NS do
5: BoxFilt[i + 1] ⇐ Filter Im with box-filter,

width=2σ[i + 1] + 1
6: DoB[i]⇐ BoxFilt[i]−BoxFilt[i + 1]
7: Exp[i, 1]⇐ τ [1]

1+τ [1]DoB[1] + 1
1+τ [1]Exp[i, 1]

8: for j = 1 to NT do
9: Exp[i, j + 1] ⇐ τ [j+1]

1+τ [j+1]DoB[i] +
1

1+τ [j+1]Exp[i, j + 1]
10: DoE[i, j]⇐ Exp[i, j + 1]− Exp[i, j]
11: SaliencyMap⇐ SaliencyMap + abs(DoE[i, j])
12: end for
13: end for
14: return SaliencyMap

were performed on a Mac Mini with a 1.87 GHz Intel
Core Duo processor. Box filter operations were performed
with Apple’s vImageBoxConvolve Planar8 function. Vector
algebra operations were performed using the BLAS library.
The time was measured in absolute (wall) time, but since
the processor was dual core, the process-specific times were
nearly identical. In practice our implementation is orders of
magnitude faster than those reported in the literature. For
example, the popular Saliency model of Itti & Baldi [2]
requires ≈ 1 minute for each 30 × 40 pixel video frame,
while the model proposed here takes 11 milliseconds for
each 120× 160 pixel video frame.

In order to ensure that the simplifications in our approach
still maintain the important properties of other visual saliency
algorithms, we compared its performance to the model of Itti
& Baldi [2]. The task was to predict human eye fixation on
videos in a free viewing task; the data were those originally
used in [2]. The performance of our algorithm (0.633 AROC)
was very similar to that of Itti & Baldi (0.647 AROC).
This is also comparable with Zhang’s original algorithm,
and so very little performance is sacrificed making the three
approximations above.

*Butko, Zhang, Cottrell, Movellan
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Two Examples

Offline: Video Analysis

Online: Camera Control
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“Pop Out” Helps Track 
People

Salience Tracking Condition

Playback Condition
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Task Directed 
Looking Behavior

Visual Popout can be useful for robots, and it seems to be important in people, but 
it can’t account for task-specific looking behavior.

It has long been known that where people look depends on what information they 
are trying to gather [Yarbus 1967]

Current studies have difficulty making quantitative claims: “Fixations are tightly 
linked in time to the evolution task. Very few irrelevant regions are 
fixated.” [Hayhoe & Ballard 2005]
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A Promising 
Framework

A common framework is shared by several authors.

Claim: The goal of eye-movements is to find visual targets.

Approach: Attend to regions x of the visual plane which 
contain visual targets with high probability. 

In open-ended tasks, drop class-specific terms.

Salience(x) = log[p(Cx = 1|ImgFeatsx)]
= log[p(ImgFeatsx|Cx = 1)] + log[p(Cx = 1)]− log[p(ImgFeatsx)]

Object Appearance
Information

Location Prior
Image Channel

Information

“Mutual Information” between object presence and image features.
*Tong, Kanan, Cottrell
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Qualitative Results (mug search)

Gist

SUN

Where we disagree the 
most with Torralba et al. 
(2006)
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Qualitative Results (picture search)

Where we disagree the 
most with Torralba et al. 
(2006)

Gist

SUN
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Qualitative Results (people search)

Where we agree the most 
with Torralba et al. (2006)

Gist

SUN
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Qualitative Results (painting search)

This is an example where SUN and humans make the 
same mistake due to the similar appearance of TV’s 
and pictures (the black square in the upper left is a 
TV!).

      Image   Humans      SUN

*Tong, Kanan, Cottrell
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Mathematical Formulation 
of Information

“Information” has two (related) mathematical meanings: 

1) How much did you expect something you 
experience (“it is going to rain”)?

2) How unsure are you about some aspect of the world 
(e.g. “is it going to rain?”)?

− log p(x)

−
∑

Possibilities

p(x) log p(x)
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Gathering Information

Question: 
“Where is a face?” 

Possibilities:
Top-left, Middle, Bottom-right, etc...
Or, nowhere.

Information (above) says how much information we 
have left to gather about the face location.

Once we have gathered the maximum amount of 
information, we will know where the face is.

−
∑

Possibilities

p(x) log p(x)

*Butko, Movellan
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Searching for Faces

4

3
2

1 1 No Face
2 No Face3 No Face

4 Face!
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Modeling the Retina
[Adapted from Najemnik & Geisler 2005]

State / Action
Signal+Noise [N(0,1)]
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*Apply Infomax principle to learn optimal eye-movement behavior!
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Integrating 
Observations

Characterized the noise properties of the sensory system.
The POMDP framework specifies how to infer the likelihood that the 
target is at each location:

I-POMDP Bayesian analysis: 
Online Learning
Local update rule

p(S = i|A1:t, !O1:t) ∝ p( !Ot = !o|S = i, At)p(S = i| !O1:t−1, A1:t−1)

p( !Ot = !o|S = i, At = k) =
N∏

j=1

p(oj |S = i, At = k)

= 1/
√

2π exp((oi − di,k)2/2)
∏

j "=i

1/
√

2π exp((oj)2/2)

=
exp((oi − di,k)2/2)

exp((oi)2/2)
Z

= exp(αi,kdi,k)Z; α ≡ (oi − di,k)/2
Bi

t ∝ exp(αi,kdi,k)Bt−1

*Butko, Movellan
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Digital Retina in Action
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Infomax Approach Improves 
State of the Art AI

Apply digital retina sequentially 
to a static image Vs. search for 
faces using a standard face 
detector.

Achieve two-fold speed increase 
with minimal loss in accuracy. 

Optimal Information (Sense 2) 
gathering.

Digital 
Retina

Full 
Image

Runtime  
(ms/1000px) 0.57 1.25

Displacement 
(% Width) 7.6% 6%

*Butko, Movellan
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Is Information The Only 
model for Eye-Movements? 

Given a set of eye-movement data, how 
should we model it?

Experiments in “top-down” effects of eye-
movement: 

“Hidden” target, have to look at 
something invisible to end trial.

No “bottom up” visual information 
to aid eye-movement.

After many trials, learn where target is 
likely to be, move eyes in absence of 
visual cues.

How can we model this study? 

Search: 20 s
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*Chukoskie, Sejnowski
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Model 1: Spatial 
Q-Learning (RL)

A subject doing this task is “rewarded” for 
finding the search target, “penalized” for 
moving their eyes too much (wasting 
energy).

Can leverage reinforcement learning. 

Actions that are close (in retrospect, 
L1 distance) to the target are 
rewarded more than far away ones.

Movements that are far (L1 
distance) from the last fixation are 
penalized. 

Learn reward structure.

Choose an eye-movement as a soft-max 
over the reward of each state. 
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*Mozer
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Model 2: Bayesian 
Optimal Observer

Use Bayesian parameter estimation to 
estimate target location distribution.

After each found-target, update estimates of 
[x-mean, x-variance, y-mean, y-variance].

For each trial, sample eye-movements from 
location distribution.

If not-found, set probability for that 
location to zero.

Renormalize and resample to generate 
next fixation.

Very similar to Infomax Approach (earlier)

Subject 
Performance

Model 
Performance

KL Distance 
Data Distr. to 
Target Distr.

KL Distance 
Recent Data to 
Target Distr.

*Arnold
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Next Steps

Einstein Tutor
In order to teach, you need to 
effectively gather information about 
the mental state of your pupil.
Attentive? Confused? Bored?

Project One
Robotic Platform to simulate 
developmental processes and 
learning during the first year of life.
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